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Abstract. Within a real space renormalisation group framework, we discuss the criticality 
of the fully anisotropic (arbitrary Jx, J ,  and J,)q-state Potts ferromagnet in the simple 
cubic lattice. Several previously known exact results for the d = 1 and d = 2 particular 
cases are recovered. Furthermore we obtain: (i) the q-dependence of the d = 3 correlation 
length critical exponent v3 (in particular, if q + O ,  v 3 ( q )  - v,(O) + v;(O)q where the present 
approximate values are v3(0 )  = 1.105 and v;(O) = -0.66; (ii) the q-dependence of the 
d = 2 - d  = 3  crossover critical exponent +23 (in particular, & 3 ~  1/& if q-'O); (iii) 
through a convenient numerical extrapolation, a quite accurate proposal for the critical 
temperatures corresponding to arbitrary ratios J , / J T  and J z / J x  and values of q. 

1. Introduction 

During recent years much work has been devoted to the q-state Potts model, both 
because of its theoretical richness and its experimental utility (for an excellent review 
see Wu 1982). However most of this work has been focused on the two-dimensional 
( d  = 2 )  case (see Wu 1982, and de Oliveira and Tsallis 1982 and references therein). 
Some effort has also been devoted to the isotropic d = 3 ferromagnet (Blote and 
Swendsen 1979), but we are not aware of any systematic study of the anisotropic d = 3 
case and its crossovers to lower dimensions. This is the purpose of the present work 
(restricted however to the discussion of the critical temperature T, and correlation 
length and crossover critical exponents Y and 4 )  which follows along the real space 
renormalisation group (RG) lines of de Oliveira and Tsallis (1982; which is herein 
recovered as a particular case). By noting q J d )  the limiting value of q above which 
the phase transition is a first-order one (we recall that l imd+l+o q , ( d )  = 00, qc(2) = 4 
and q C ( 3 ) s 3 ;  see Wu (1982) and de Magalhles and Tsallis (1981) and references 
therein), the present work is restricted to q S q c ( d ) .  We present in § 2 the model and 
the formalism, in § 3 the RG results, and in § 4 the extrapolation procedure which 
provides accurate values for T, corresponding to models with arbitrary anisotropy. 

0305-4470/84/163209+ 13%02.25 @ 1984 The Institute of Physics 3209 
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2. Model and formalism 

Let us consider the q-state Potts ferromagnet whose Hamiltonian is given by 

where ( i , j ,  k )  runs over all sites of a simple cubic lattice and r Z j , k  = 1 , 2 , .  . . , q, V(i, j ,  k ) .  
We briefly recall the present status of knowledge of the critically (T,, I, and 9) of this 

b z 1  b : 1  3 =  1 

Figure 1. RG cells and their equivalent two-rooted graphs; the arrows indicate the entrance 
and exit points of the cells: 0 and 0 respectively denote terminal and internal nodes of 
the graphs; f,, t ,  and f2 are the transmissivities along the three crystal-axes. ( a ) ,  ( b )  and 
(c )  have been used (de Oliveira and Tsallis 1982) for the d = 2 case (the cluster i c )  is 
renormalised into the cluster ( a ) ) .  ( d ) - ( h )  correspond to the d = 3 case (the cluster (g),  
or equivalently the graph ( h ) ,  is renormalised into the cluster ( d ) ) .  (g)  is the d = 3 extension 
of the central cluster of ( c ) ;  ( h )  is the d = 3  extension of the right graph of (c):  because 
of its complexity, we have omitted the indication of the d = 3 extension of the left cluster 
of ( c ) .  
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b =  2 
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Figure 1. (contd.). 

lhl 

model: (i)  far d = 1 (i.e., J,, = J, = 0) the critical temperature T, vanishes, and the 
correlation length critical exponent satisfies vI  = 1, V q ;  (ii) for d = 2 (i.e., J ,  = 0 and 
J,, > 0) T, is exactly known (Baxter er a1 1978, Burkhardt and Southern 1978 and 
Hintermann et a1 1978); (iii) the d = 1 to d = 2 and d = 1 to d = 3 crossover critical 
exponents (respectively 4q2 and 413) are commonly believed to satisfy (Redner and 
Stanley 1979, de Oliveira and Tsallis 1982 and references therein) 4~~~ = 413 = 1, V q ;  
(iv) for the isotropic d = 3 case (i.e., J, = J,, = J,), T, is given by 

3.52 f 0.05 for q = 1 (from Gaunt and Ruskin 1978) (2a)  
kBTc/qJ, = 2.2556 * 0.0002 for q = 2 (from Zinn-Justin 1979) (26) i 1.8169 for q = 3 (from Jensen and Mouritsen 1979) (2c) 

where the q = 1 value has been obtained from pc = 0.247 0.003 by using the Kasteleyn 
and Fortuin ( 1969) isomorphism ( p  = 1 - e-’x’kBT) with bond percolation, and where 
we recall that the q = 3 case might be slightly first order; the corresponding critical 
exponent is given by 

0.88 for q = 1 (Heerman and Stauffer 1981) (3a)  
(3b) v3 -(0.630 * 0.00 15 for q = 2 (Le Guillou and Zinn-Justin 1980) ; 

(v)  For the d = 2 to d = 3 crossover exponent 423 the following results are available 

for q = 1 (Redner and Stanley 1979) (4a)  

for q = 2 (Liu and Stanley 1972, 1973, Citteur and Kasteleyn 
1972, 1973). (4b) 

Before presenting our RG formalism, let us define a few convenient variables (Tsallis 

{ 745 ( exact) 
4 2 3  2: 

and Levy 1981, Tsallis 1981): 
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(referred to as thermal transmissivity) and 

where (Tsallis and de Magalhles 1981, de Magalhles and Tsallis 198 1) the pure number 
h (d )  sensibly depends on dimensionality d and very slightly on the particular d- 
dimensional lattice (h(2) = 1 for square lattice, and h(3) = 0.377 *0.044 for simple cubic 
lattice). 

If we have a series (or parallel) array of two bonds with transmissivities t ,  and t 2 ,  
the overall transmissivities (respectively t ,  and tP) are given by t ,  = t l t 2  (series) and 
t,” = t f t ?  (parallel) where 

(D stands for dual). We can also verify that h = 1 (squared lattice) implies s(’)( tD) = 

We can now introduce our RG framework. Following along the lines of the de 
Oliveira and Tsallis (1982) treatment of the square lattice case, we establish the RG 

recursive relations by renormalising the b = 2 cell indicated in figures l (g) ,  ( h )  into 
the b = 1 cell in figure 1 ( d )  ( b  denotes the size of the cell, and coincides with the linear 
scaling factor). The recurrence is based upon the preservation of the partition function, 
and can be economically established by using the break-collapse method (Tsallis and 
Levy 1981). We obtain 

1 - s ( y  t ) .  

t ! x = R b ( t x ,  rp l ,; 9 )  (7) 

where Rb( t,, t,, t ,  ; q )  = Rb( t,, t,, t , ,; q )  is a ratio of polynomials (in the t ’ s )  too lengthy 
to be reproduced herein (the numerator and denominator contain more than 1600 
terms each). The sum of the coefficients of the numerator coincides with that corre- 
sponding to the denominator and is given (Tsallis and Levy 1981, Essam 1982) by q K  
where K = cyclomatic number = [(number of bonds) -(number of sites) + 13 (for the 
two-terminal graph of figure l (h )  it is K = 20). It is worth noting that Rb( f,, t,,, 0; q )  
recovers equation (12) of de Oliveira and Tsallis (1982). 

The rest of the RG recursive relations are given by 

where the equivalence of the x, y and z axes has been taken into account. By studying, 
for fixed q, the RG flow (in the (t, ,  t,, t,)-space) determined by equations (7)-(9) we 
can obtain the fixed points, the para-ferromagnetic separatrix, as well as the relevant 
Jacobians a( t:,  tb, t : ) /a (  t,, t,, r,), which in turn determine the critical exponents v 
and d. 

3. Results 

Our results are illustrated in figure 2. Equations (7)-(9) provide the following fixed 
points: (i) (SF’, sf’, s12’) = (0, 0,O) and (1, 1, 1) are fully stable, and correspond respec- 
tively to the para- and ferromagnetic phases; (ii) (1 ,  l,O), ( l , O ,  1 )  and (0, 1, 1 )  are 
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0 

0 

0 201 1 
0 1 2 3 

*s121 4 

Figure 2. Para(P)-ferro(F) magnetic critical surface 
in the (sk2), sL2), s j2) )  space. The arrows indicate the 
RG flow. The main fixed points are indicated: A 
(ferromagnetic) and A (paramagnetic) attract all the 
points respectively above and below the critical sur- 
face; 0, 0 and 0 respectively are the d = 1, d = 2 
and d = 3 critical fixed points. 

Figure3. q-dependence of the RG critical point cor- 
responding to the isotropic d = 3 model (notice the 
ordinate scale). The dots are series results: q = 1 
(Gaunt and Ruskin 1978), q = 2 (Zinn-Justin 1979) 
and q = 3 (Jensen and Mouritsen 1979). 

semi-stable ones, and belong to the ferromagnetic region; (iii) (1,0,0), (0, 1 , O )  and 
(0, 0, 1) are fully unstable ones, and correspond to the d = 1 case; (iv) (1, f, 0), (4, 0 , f )  
and (O,;, f) are semi-stable ones, and correspond to the d = 2 isotropic case; (v) 
(si3), si3), si3’) is a semi-stable one, and corresponds to the d = 3 isotropic case (si3’ 
softly depends on q ;  see figure 3). 

The RG critical surface contains the line sL2) + s f )  = 1 at si2) = 0 (and the equivalent 
ones), thus reproducing the exact d = 2 result. The performance at the isotropic d = 3 
fixed point is not comparable to the d = 2 case, as the RG provides, for q = 1, t ,  = 0.2260 
(instead of 0.247, corresponding to equation 2(a)),  for q = 2 ,  t,-0.1949 (instead of 
0.218 11, corresponding to equation 2( b)), and, for q = 3, f C =  0.1750 (instead of 0.1966, 
corresonding to equation 2(c)). The results obtained for T, for arbitrary anisotropy 
ratios J y /  J, and J,/  J, are indicated in table 1. 

The Jacobian at the d = 1 fixed points is fully degenerate and its unique eigenvalue 
A “ )  equals 3. It can be shown that A ( ’ ) =  26 - 1 for arbitrary values of b, therefore 
v l  = limb+m In blln(2b - 1)  = 1, thus recovering the exact result. The degeneracy of this 
Jacobian implies that both d = I-d = 2 and d = 1-d = 3 crossover exponents 412 and 
d13 equal unity, thus recovering the exact answer. 

At the d = 2 fixed points the Jacobians are as follows. Let us analyse for instance 
the (sL2’, sf’, si2’) = (f,& 0) fixed point (the others are analogous); its Jacobian has the 
following form 

a (q )  b(q) c ( q )  
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Table 1. Critical points (k,T'/qJ,) for the anisotropic d = 3  model: RG (top) and extra- 
polated (bottom) values. + indicates exact results (see for example Wu 1982) for the 
isotropic d = 2 case; $, 4 and I /  are series results (see the text and figure 3) for the isotropic 
d = 3 case. 

\J,lJx ~ 

J,/J,\ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0 0 
0 

- 0. I 
- 

0.2 - 
- 

0.5548 0.7112 0.8349 0.9421 1.0390 1.1287 1.2129 1.2928 1.3692 1.4427 
0.5548 0.7112 0.8349 0.9421 1.0390 1.1287 1.2129 1.2928 1.3692 1.44271 

1.0592 1.2643 1.4255 1.5646 1.6896 1.8047 1.9125 2.0145 2.1117 2.2049 
1.0229 1.2104 1.3612 1.4934 1.6139 1.7260 1.8317 1.9322 2.0284 2.1210 

- 1.4912 1.6689 1.8216 1.9584 2.0840 2.2013 2.3121 2.4174 2.5183 
- 1.4061 1.5636 1.7024 1.8293 1.9479 2.0601 2.1670 2.2696 2.3686 

- - 1.8592 2.0223 2.1682 2.3019 2.4266 2.5440 2.6557 2.7625 
- - 1.7259 1.8690 2.0002 2.1231 2.2394 2.3506 2.4575 2.5607 

- - - 2.1942 2.3476 2.4882 2.6190 2.7421 2.8591 2.9708 
- - - 2.0158 2.1504 2.2766 2.3963 2.5107 2.6209 2.7273 

- - - - 2.5078 2.6543 2.7905 2.9186 3.0402 3.1563 
- - - - 2.2882 2.4172 2.5397 2.6569 2.7698 2.8789 

- - - - - 2.8061 2.9472 3.0798 3.2055 3.3256 
- - - - - 2.5489 2.6739 2.7935 2.9088 3.0203 

- - - 3.0927 3.2294 3.3590 3.4826 
- - - 2.8012 2.9232 3.0406 3.1543 

- - - - 3.3699 3.5031 3.6300 
- - - - - 3.0472 3.1667 3.2824 

- - - 3.6395 3.7696 
- - - 3.2882 3.4057 

- - 3.9026 
- - 3.5250% 

- - - 
- - - 

- - - 
- - 

- - - - - 
- - - - - 

- - - - - - - 
- - - - - - - 

q = 2  

J ,  1 J ,  

J : /  J ,  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.4529 
0.4529 

0.7276 
0.6993 

- 
- 
- 
- 
- 
- 
- 
- 

0.5708 
0.5708 

0.8578 
0.8 165 

0.9967 
0.9323 

- 

- 

- 
- 

- 
- 

0.6644 
0.6644 

0.963 1 
0.9141 

1.1090 
1.0299 

1.2270 
1.1275 

- 
- 

- 
- 

0.7462 0.8205 
0.7462 0.8205 

1.0555 1.1398 
1.0018 1.0828 

1.2075 1.2972 
1.1 184 1.2009 

1.3304 1.4243 
1.2164 1.2998 

1.4379 1.5355 
1.3058 1.3898 

- 1.6365 
- 1.4746 

0.8897 0.9550 
0.8897 0.9550 

1.21 83 1.2925 
1.1591 1.2316 

1.3806 1.4593 
1.2792 1.3540 

1.51 16 1.5939 
1.3791 1.4553 

1.6262 1.7115 
1.4700 1 S472 

1.7301 1.8181 
1.5556 1.6336 

1.0172 
1.0172 

1.363 1 
1.3012 

1.534 I 
1.426 1 

1.672 1 
1.5289 

1.7926 
1.6219 

1.9018 
1.7092 

1.0769 
1.0769 

1.4309 
1.3682 

1.6059 
1.4958 

1.7470 
1.6002 

1.8702 
1.6944 

1.9818 
1.7828 

1.1346 
1.1346t 

1.4964 
1.4332 

1.675 I 
1.5634 

1.8192 
1.6696 

1.9449 
1.7652 

2.0588 
1.8546 
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Table 1-continued 

( b )  q = 2  

\ J , I J ,  
J 2 / J r  \ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

1.9169 
1.7162 

2.0098 
1.7958 

- 
- 
- 
- 

- 
- 

2.0029 
1.7927 

2.0979 
1.8732 

2.1880 
1.9513 
- 
- 

- 
- 

2.0851 2.1642 
1.8671 1.9399 

2.1821 2.2630 
1.9485 2.0221 

2.2741 2.3568 
2.0274 2.1019 
2.3619 2.4463 
2.1044 2.1796 

- 2.5323 
- 2.25561 

( C )  q = 3  

J ,  I J ,  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.4060 
0.4060 

0.6044 
0.5820 

- 
- 

- 
- 

- 
- 

0.5066 
0.5066 

0.7072 
0.6749 

0.8144 
0.7642 

- 
- 
- 
- 

0.5869 
0.5869 

0.7918 
0.7537 

0.9028 
0.8413 

0.9945 
0.9 I74 

- 
- 

0.6572 
0.6572 

0.8670 
0.825 I 

0.98 14 
0.9 I23 

1.076 I 
0.9878 

1.1602 
I .0580 

0.7213 0.7813 
0.7213 0.7813 

0.9360 1.0008 
0.891 7 1.9548 

1.0537 1.1214 
0.9791 1.0429 

1.1510 1.2212 
1.0547 1.1187 

1.2374 1.3098 
1.1249 1.1892 

0.8380 0.8923 
0.8380 0.8923 

1.0622 1.1211 
1.0150 1.0730 

1 .  I857 1.2472 
1.1043 1.1636 

1.2878 1.3515 
1.1807 1.2408 

1.3783 1.4439 
1.2515 1.3122 

- - - - 1.3168 1.3911 1.4614 1.5287 
- - - - 1.1918 1.2564 1.3191 1.3802 

- - - - - 1.4671 1.5391 1.6080 
- - - - - 1.3213 1.3843 1.4459 

- - - - 1.6 127 1.6830 
- - - - - - 1.4478 1.5098 
- - 

0.9445 
0.9445 

1.1778 
1.1291 

1.3065 
1.2213 

1.4128 
1.2993 

1.5070 
1.3714 

0.9950 
0.9950t 

1.2327 
1.1836 

1.3638 
1.2774 

1.472 1 
1.3565 

1.568 1 
1.4293 

,5934 1.6560 
,4399 1.4985 

,6742 1.7382 
,5061 1.5652 

,7506 1.8159 
,5705 1.6301 
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The eigenvalues A = a ( q )  + b( q )  and A i 2 )  = a ( q )  - b(  q )  recover the results of de 
Oliveira and Tsallis (1982) and A i 2 ’ =  d ( q )  (too lengthy to be reproduced herein; it 
monotonically decreases from about 8.1 to about 3.3 when q increases from 0 to 3). 
The respective eigenvectors are (1,  1 , O )  (1, - 1 , O )  and (1,  1, ( A ~ ’ ( q ) - A ‘ l ’ ’ ( q ) ) / c ( q ) ) .  
We verify that A i 2 ’ ( q ) >  l>A~*’(q)>O, V q S O ,  and that A : 2 ’ ( q ) ~ A ‘ : ’ ( q ) ( A : 2 ’ ( q ) <  
A i 2 ’ (  q ) )  if q s q*( q > q * )  where q* = 5 .  The coefficient c(  q )  monotonically increases 
from roughly zero to roughly 10 when q varies from zero to infinity; consistently the 
eigenvector associated with Ai2’(q)  is roughly along the (1, 1, 1 )  direction for q varying 
let us say between 1 and 3. Within the present b = 2 RG approximation the critical 
exponents are given by v2 = In 2/ln A i 2 ’  and 423 =In Ai2’/ln Ai2’:  see figures 4 and 5 
and table 2. 

l ot 
2 3 4 0 1 2 3 4 0.1 Q5 1 

4 4 

Figure 4. q-dependence of the d = 2 correlation Figure 5. q-dependence of the d = 2 0  d = 3 RG 
length critical exponent u2: RG (-1 and exact ( -  - -; crossover exponent &3. The dots are series (0; 
den Nijs 1979). Redner and Stanley 1979) and exact (0; Liu and 

Stanley 1979, 1973, Citteur and Kasteleyn 1972, 
1973). 

The Jacobian at the d = 3 fixed point (r, = ry = t,  = ta3’( q ) )  is as follows: 

4 q )  f ( q )  
f ( 4 )  e ( q )  f ( 4 )  1 f ( 4 )  f ( 4 )  e ( q )  

The eigenvalues are 

A \ 3 ) =  4 q )  (12) 

e ( q )  - f (q )  (13) 

and 
A i 3 )  = A y )  = 

and the eigenvectors are respectively ( 1, 1, 1)  and any vector perpendicular to ( 1, 1, 1). 
We verify A I”( q )  3 1 2 A i 3 ) (  q )  > 0, V q  3 0. The corresponding approximated critical 
exponent is given by v3 = In 2/ln A i 3 ’  (see figure 6 and table 2); Ai3’(q) monotonically 
increases from roughly zero to 1 when q vanes from zero to infinity. 
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Table 2. Present RG and exact (or series) results for the critical point t ,  and exponents Y 
and 4 for the isotropic d-dimensional models. (a) Wu (1982) and references therein; (b )  den 
Nijs (1979); Redner and Stanley (1979); (d) Liu and Stanley (1972, 1973), Citteur and 
Kasteleyn (1972, 1973); (e) Gaunt and Ruskin (1978); (') Zinn-Justin (1979); (B) Jensen and 
Mouritsen (1979); ( h )  Heerman and Stauffer (1981); (I) Le Guillou and Zinn-Justin (1980). 

q + o  q =  1 q = 2  q = 3  q = 4  

d = 1 f:') RG (Vb) 
exact 

Y ,  R G ( V ~ )  

d = 2  t?) R G ( V ' ~ )  
exact 

v2 ~ ~ ( b = 2 )  

exact 

4 2 3  RG(b=2)  

exact 
or series 

d = 3  tL3' RG(b=2)  
series 

U) RG(b=2)  
series 

1 
1" 

In b 

1 
1" 

In b 

1 
I" 

In b 
In (2b- 1 )  

I"  

1 
1" 

r 
-1 4 9  
-1 -Jq" 

45 In2 0.600 

52.5 J;f 
v 1.047b 

--- - 

_=- 

3 J q  J;; 
2 -_ - 
Ji 

- 

=0.294-0.11 q 
- 

=1.105-0.66q 
- 

In (2b- 1 )  

I"  

1 
1" 

1/2 
112" 

1.042 

$= 1.333b 

2.258 

1.75' 

0.2260 
0.247' 

0.756 
0.88h 

In (2b- 1 )  

1" 

1 
l a  

$- 1 
42-  la 

0.864 

I b  

1.637 

1.7Sd 

0.1949 
0.21811' 

0.657 
0.630' 

1 1 
1" la  

In b In b 
ln(2b-1) ln(2b-1) 

1" l a  

1 1 
la 1" 

l / ( & + l )  1/3 
l / ( & + l ) a  1/3" 

_ _ _ ~  

0.785 0.738 

2 = 0.833b f = 0.667b 

1.346 1.163 

0.1750 - 
0.1966' - 
0.606 - 
- - 

0 1 2 3 
0 

Figure 6. q-dependence of the d = 3 correlation length critical exponent v3: RG (-) and 
series (0; Heerman and Stauffer 1981 for q = 1 ; Le Guillou and Zinn-Justin 1980 for q = 2). 
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4. Extrapolation for the critical point 

In this section we describe an ad  hoc extrapolation procedure for the critical temperature 
T, for an arbitrary value of 4. We take advantage from the fact that the anisotropic 
d = 2 RG result is the exact one for all 4, and that the isotropic d = 3 RG result is not 
too bad (at least for 4 =  1,2,3,  where comparison with other results is possible). 
It essentially consists in ‘pushing’ the centre ( s y ’  = s y )  = si”  = sy ) )  of the RG critical 
surface in the (s?), s r ’ ,  s12’)-space (see figure 2 ) ,  until it coincides (by imposition) with 
the best value (noted so; usually from series) available in the literature for that particular 
value of q ;  the effects of this ‘pushing’ monotonically and softly decrease while going 
from the centre of the critical surface to its periphery, eventually vanishing on the 
anisotropic d = 2 limiting case (i.e. sL2’ = 0 or s:2) = 0 or si2)  = 0) where, as said before, 
the exact result is reproduced by the RG. As no confusion can occur in the present 
section, we use sa = sf) ( a  = x, y ,  z ) ,  where s;” is given by equation (5b) with h(2) = 1 .  
Summarising, the input, for a given q, of the extrapolation procedure is the RG critical 
surface and the ‘exact’ value for the isotropic d = 3 critical point. 
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Figure 7. Geometric constructions related to the extrapolation procedure (see § 4) ( a )  the 
(si2’, ~ t ” ,  s‘;z’) space, ( 6 )  the triangle determined by the points 0, P and T of ( a )  

We consider, in the (s,, s), s,)-space (see figure 7 ( a ) ) ,  the point P (on the RG critical 
surface and not belonging to the trisectrix s, = s, = s,) to be extrapolated; its coordinates 
are noted (s,“, s;, s!) and conventionally satisfy 1 z s z 2  s:2 s P 2 0  (every other region 
is directly associated with this one through trivial symmetry transformations). This 
point and the trisectrix determine a unique plane whose equation is given by 

This plane and the plane 

(15) s, + sy + s, = 1 

(which contains all three exact d = 2 critical lines, e.g., s, +sL = 1 for s, = 0) determine 
a unique straight line. This line cuts the s, = 0 plane at the point (se) ,  sv ) ,  0) and the 
s, = 0 plane at the point (0, s:’, SF)), where 

s? ’=  1/(1 +g) ,  S;?=g/(l  +g). 

s y =  ( 1  -g) / (2-g) ,  s y =  1/(2-g). 
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This line also cuts the trisectrix at the point T with coordinates (4, f ,  f ) .  If we consider 
now the triangle determined by the points (0, 0, 0), (SF’, s:), 0) and (0, s:), sj“’) (see 
figure 7( b ) ) ,  we immediately obtain 

(17a) 

( 1 7 b )  

where rl and r2 are defined in figure 7 ( b )  (II and r2 respectively correspond to 
( s v ) ,  s y ) ,  0) and (0, s‘y“’, SF))). The angle 0 defined in figure 7(b) is determined by 

r ,  = + [(f)’ + (f - s?))* + (f - sy’)2]l’2 
I 2 1 / 2  r2 = + [(f - s?))’ + (f - si,’’)2 + ( 5 )  3 

s,’+s,p + s; 
J5s 

cos 0 = 

where 
s p =  +[(sx‘ )2+(s,p)2+(s, )  P 2 ] 112 . 

The quantity rp defined in figure 7(  b )  is given by 

r p =  -(tan e) /&  [ - r 2 ,  r , ] .  (20) 

Obviously s p s  [f +( rp)2]1’2. 
The value sp is going to be extrapolated into sex through the relation 

sex = sp[l + ~ ( r ’ ) ]  (21) 

where the extrapolating function F (  r )  is assumed to satisfy the following conditions: 

(i) F(rl) = F ( - r 2 )  = 0 

(ii)  F ( 0 )  =J3s, /sP-  1 ,  (22b) 

(iii) F (  r )  maximal at r = 0. (22c) 

F (  r )  = F(O)( 1 - Ar2 - B r 3 )  (23) 

A ~ ( r ~ + r ~ ) / ( r ~ r ~ + r ~ r ~ )  (24a) 

B = ( 1 - Ar:)/  r ; .  (246) 

The simplest polynomial which satisfies these conditions is 

where 

and 

Finally the coordinates of the extrapolated point are given by 

sy = (seX /sP)s ,P  (a = x, y ,  z ) .  (25) 

In spite of its apparent complexity, the implementation in computer of this 
extrapolating algorithm is very simple. The operational steps are as follows: (i) given 
(s,‘, s;, s:), g is calculated through equation (14), and also s?), sf) ,  s:’ and s?) through 
equations (16), hence r l  and r2 (through equations (17))  and finally A and B (through 
equations (24));  (ii) (sc, sr,  s;) also determine 0 and sp through equations (18) and 
(19), which in turn determine rp through equation (20) ; (iii) so (taken from the literature) 
and sp determine F ( 0 )  through equation (22b); (iv) the knowledge of A, B, rp and 
F ( 0 )  determines F (  rP) through equation (23), hence sex (through equation (21)) and 
finally (s?, sex, s:’) through equation (25). 
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The results obtained by using the above algorithm are indicated in table 1. In order 
to test the reliability of our results we have compared them with series calculations 
available for q = 1 (figure 8 ( a ) )  and q = 2  (figure 8 ( b ) )  for the particular cases OS 

J, /  J,  S J y /  J, = 1 and 0 S J y / J x  = J L /  J,  S 1. The agreement is very satisfactory (the 
discrepancy in the t-variable is always smaller than 0.01). 

1 0  

Figure 8. Present extrapolated results (-) for the critical point corresponding to the 
particular anisotropic d = 3 case where two coupling constants are assumed equal (sJL) 
and the third one ( = J , , )  eventually different. We have the isotropic d = I ,  d = 2  and d = 3  
cases at the ordinate, abcissa and bisectrix respectively. ( a )  q = I ; the dots are series results 
(Redner and Stanley 1979); ( b )  q = 2 :  both dots (Oitmaa and Enting 1971) and circles 
(Paul and Stanley 1972) are series results. 

5. Conclusion 

We have discussed, within a real space renormalisation group framework, the q-state 
Potts ferromagnet in the fully anisotropic (arbitrary J,, Jy and J , )  simple cubic lattice. 
The q-dependences of the critical temperature T,, the one-, two- and three-dimensional 
correlation length critical exponents v,, vz and u3, and the d = lc*d > 1 and d = 2-d = 3 
crossover critical exponents and 423 are analysed in the second-order phase 
transition region (Vq  for d = 1, q s 4  for d =2,  and q s  q,(3) = 3  for d = 3 ) .  

The present renormalisation group reproduces a considerable amount of already 
known exact results such as t:’= vI  = = 1 ,  Vq, for d = 1 ,  t , =  l / ( & + l )  for d =2, 
etc; it also recovers, in the q + 0 limit, the correct asymptotic behaviour vzoC l / J q .  
Whenever our numerical results do not coincide with available exact or series ones, 
the discrepancies are acceptable. Furthermore the universality classes we obtain are 
as commonly expected, i.e. the d = 3 one for all values of J,, Jy and J, as long as none 
of them vanishes, and the d = 2 one when only one among them vanishes. The general 
picture inspires reasonable confidence, and therefore we tend to believe that the q + 0 
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d = 3 results 4 2 3 ~  I/&, tk3’(q) - tk3’(0) + tL3”(0)q and v 3 ( q )  - v3(0)  + vj(0)q (with 
finite values for th”(O), t:”’(O), v3(0)  and v;(O)) are correct. 

We have also developed an extrapolation procedure for T, which has proved to 
be quite satisfactory whenever comparison with other available results (typically from 
series) was possible, namely for the 0 6 J J  J,  6 J y /  J, = 1 and 0 S J y /  J ,  = J,/ J ,  S 1 
particular cases of the q = 1,2 models. Through this procedure we have calculated T, 
for arbitrary ratios J y /  J, and J, /J ,  and values of q (the q = 3 results are probably 
almost unaffected by the fact that the transition might be slightly first order). A theory 
which, enlarging the parameter space, would succeed in recovering the existence of 
first-order phase transitions would be very welcome. If alternatively the present RG is 
understood as refemng to the hierarchical lattice defined by figure 1 ( h ) ,  then all the 
results it provides are exact for q 2 0 .  
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